25EC104: Departmental Workshop (EC)

w. e. f. Academic Year:		2025-26
Semester:		1/2
Category of the	e Course:	Engineering Science
Prerequisite:	Zeal to learn the subject	
Rationale:	knowledge and practical sk activities such as soldering, ci the course aims to develop es and implementing electroni safety practices and standard	equip first-year students with foundational ills in electronics. By engaging students in reuit assembly, and the use of diagnostic tools, sential skills that are crucial for understanding c systems. Furthermore, the integration of its ensures that students are well-prepared for promoting innovation and problem-solving nics.

Course Outcomes:

After Completion of the Course, Student will able to:

	Course Outcome (CO)	RBT Level (Cognitive Domain)
CO1	Recall and explain the classification, specifications, packaging, and standard symbols of electronic components, including cost	Understand / Remember
	estimation and procurement considerations.	Kemember
CO2	Interpret electronic circuit diagrams using IEEE/BIS symbols and	Understand
332	datasheets of discrete and integrated components to support basic circuit design and cost budgeting.	/Apply
CO3	Demonstrate the operation and application of electronic	Apply/Analyze
	measurement instruments and tools to test, measure, and	
	troubleshoot electronic components and circuits.	
CO4	Perform systematic testing and characterization of passive and	Analyze/Evaluate
	active electronic components using standard techniques and	
	evaluate their functionality and quality.	
CO5	Design, assemble, and fabricate electronic circuits on PCBs using	Create
	various interconnection methods and soldering techniques,	
	ensuring safety and functional integrity.	
CO6	Work in a team with good interpersonal skills.	Apply

Teaching and Evaluation Scheme:

Teaching Scheme					eme			Exam	ination Schei	me
	L	Т	P	С	Hrs/Week	IE	Theory	CIA	Practical	Total Marks
	-	-	02	01	02	-	-	30	20	50

IE: Internal Evaluation
CIA: Continuous Internal Assessment

Theory: Theory Exam (End Semester)
Practical: Practical Exam (End Semester)

Detailed Syllabus:

Topic Hrs % of									
Topic	Hrs	% of Weightage							
UNIT: 1 Identification and Specification of Electronic Components	6	20							
• Classification of electronic components: Active, Passive, Electrical,									
Electronic, and Electro-mechanical.									
Identification and specifications:									
Passive components: Resistors (types, color coding), Capacitors									
(types, size, markings), Inductors, Pulse Transformer, Opto									
coupler.									
 Active components: Diodes, Transistors, ICs, MOSFETs, 									
Thyristors.									
 Other components: Wires, Cables, Connectors, Fuses, Switches, 									
Solid state Relays, Crystals, Displays, Fasteners, Heat sink.									
Packaging and Symbols: Standard notations, industry standards (BIS,									
IEEE).									
Component cost estimation and procurement considerations.		_							
UNIT: 2 Electronic Circuit Diagram and Data Sheet Interpretation	2	7							
Understanding circuit diagrams and standard IEEE/BIS symbols.									
Interpretation of datasheets for discrete components and ICs.									
Fundamentals of circuit design and layout considerations.									
Estimation of component cost and budgeting for circuit									
development.									
UNIT: 3 Testing Instruments and Tools	6	20							
Introduction to electronic measurement instruments:									
 Multimeter, Function Generator, Power Supply, CRO (Cathode 									
Ray Oscilloscope), DSO (Digital Storage Oscilloscope), etc.									
Hands-on operation and analysis using the above instruments.									
Commonly used tools:									
 Soldering iron, Disordering pump, Pliers, Cutters, wire strippers, 									
Screwdrivers, Tweezers, Crimping tool, Hot air									
soldering/disordering station etc.	1								
UNIT: 4 Testing and Characterization of Electronic Components	2	6							
Techniques for testing electronic components using a multimeter: Pagintage Conspitors Diedo Transister ISST ICC etc.									
 Resistors, Capacitors, Diode, Transistor, JFET, ICs etc. UNIT: 5 Interconnection Methods and Soldering Practices 	8	27							
	_	27							
Methods of interconnecting components: Bread boarding, Wire Wranning Crimping									
Wrapping, Crimping.									
 Soldering techniques: Types of soldering (soft, hard, wave, reflow). 									
 Selection of soldering materials and flux. 									
 Safety precautions in soldering and disordering. 									
UNIT: 6 Printed Circuit Boards (PCB)—Design and Fabrication	6	20							
Types of PCBs: Single-sided, Double-sided, and PTH (Plated)	_	20							
Through-Hole).									
 Practical soldering exercises on connectors and general-purpose 									
- Tractical solucining exercises on connectors and general-purpose	I								

PCBs.		
Total Hours	30	100

List of Practical:

1.	To study and use electronic meters such as voltmeters, ammeters, multimeters, and
	LCR-Q meters.
2	To study and use electronic measuring instruments including power supplies, cathode
	ray oscilloscopes (CROs), digital storage oscilloscopes (DSOs), and function generators.
3	Familiarization with Electronic Workshop Tools and Accessories : breadboard, solder,
	cables, relays, switches, connectors, fuses, cutters, pliers, screwdriver set, wire
	stripper, flux, knife/blade, soldering iron, de-soldering pump, etc.
4.	Identification and Symbol Drawing of Active and Passive Electronic Components.
5.	Study and Interpretation of Datasheets for Electronic Components and Integrated
	Circuits.
6.	Determination of Resistor, Inductor, and Capacitor Values Using Color Codes
7.	Testing of electronic components like Resistor, Capacitor, Diode, Transistor, ICs etc.
8.	Mounting and Testing of Electronic Circuits on Breadboard.
9.	Soldering and Desoldering of Electronic Components on PCB.
10.	Mini Project.

Text/ Reference Books:

- 1. S. M. Dhir, "Electronic Components & Materials, Principals, Manufacture & Maintenance", TATA MC Graw hill publishing company ltd. New Delhi.
- 2. Owen Bishop, "Electronics-A first Course", Second Edition, Newnes An Inprint of Elsevier.
- 3. B. L. Therja, "Basic Electronics Solid State", S. Chand & Co. Ltd. New Delhi.
- 4. V.K., Mehta, Rohit Mehta, "Principles of Electronics", S. Chand and Co. Ltd., New Delhi-110 055.
- 5. R. S. Khandur, "Printed Circuit Boards, Design Fabrication & Assembly", New York-M. C. Graw Hill. 2006, ISBN: 9780071464208

E-Resource / Web link:

- 6. https://download.ni.com/support/manuals/374483a.pdf.
- 7. https://resources.pcb.cadence.com/i/1180526-pspice-user-guide/52?
- 8. https://www.tina.com/docs/v12/Tina-v12-manual.pdf.
- 9. https://www.circuitbasics.com/electronic-tools-and-equipment/
- 10. https://tooabstractive.com/electronics/electronic-tools-and-their-functions/

Course Outcomes Mapping:

	<u> </u>				
	Curse Outcome	POs/ PSOs	CL Cognitive level	Knowledge Category	Lab Hours
CO1	Recall and explain the	PO1, PO2,	Understand	Factual	4
	classification, specifications,	PSO1	Remember	Conceptual	
	packaging, and standard				
	symbols of electronic				

	components, including cost estimation and procurement considerations.				
CO2	Interpret electronic circuit diagrams using IEEE/BIS symbols and datasheets of discrete and integrated components to support basic circuit design and cost budgeting.	PO2, PO3, PO5, PO10, PSO1, PSO2	Understand Apply	Conceptual Procedural	5
CO3	Demonstrate the operation and application of electronic measurement instruments and tools to test, measure, and troubleshoot electronic components and circuits.	PO2, PO4, PO5, PSO1, PSO2	Apply Analyze	Procedural Factual	6
CO4	Perform systematic testing and characterization of passive and active electronic components using standard techniques and evaluate their functionality and quality.	PO2, PO4, PSO1	Analyze Evaluate	Procedural Conceptual	4
CO5	Design, assemble, and fabricate electronic circuits on PCBs using various interconnection methods and soldering techniques, ensuring safety and functional integrity.	PO3,PO5, PO7,PO8, PO9, PO10, PO11, PO12, PSO1, PSO2	Create	Procedural Conceptual Metacognitive	7
CO6	Work in a team with good interpersonal skills.	Metacognitive Procedural	4		
Tot	al hour of Instruction				30

Mapping of COs with POs & PSOs:

со	PO										PSO			
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	3											3	
CO2		3	3		3					3			3	3
CO3		3		3	3								3	3
CO4		3		3									3	
CO5			3		3		3	3	3	3	3	3	3	3
CO6						3		3	3	3		3		

3: High, 2: Medium, 1: Low